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1 PEL type Shimura Varieties

Here we mostly follow Section 2 of [Man05], but see [Mil; Lan13]. Let p be a prime number (we probably
need p > 2 to be safe), in this section we will discuss PEL type Shimura varieties that have good reduction
‘at p’.

1.1 PEL data

We will fix the following types of data (PEL datum):

• A finite-dimensional simple algebra B over Q with a positive involution ∗;

• an Z(p)-order OB in B whose p-adic completion is a maximal order inside BQp ;

• a finitely-generated (left) B-module V with a nondegenerate, alternating and ∗-Hermitian pairing
〈−,−〉 : V × V → Q

such that the following conditions hold (the PEL datum is ‘unramified’):

• There is a lattice Λ in VQp which is preserved by ∗ and self-dual under the pairing 〈−,−〉;

• the base change BQp is a product of matrix algebras over unramified extensions of Qp.

Example 1.1.1. (Siegel modular varieties) Let B = Q with ? = Id and let V = Q2n with the standard
symplectic form

Example 1.1.2. (Shimura curves over Q) Let B/Q be an indefinite quaternion algebra with canonical
involution ?, let V = B and let p be any prime such that BQp

∼= M2(Qp).

Example 1.1.3. (Picard modular varieties) Let B = E/Q be an imaginary quadratic extension and let ?
equal complex conjugation. Let V = En with pairing defined by the matrix 1b×b

ε1(a−b)×(a−b)
1b×b

 ,

where 0 6= ε ∈ OE satisfies ε = −ε and where a, b are nonnegative integers satisfying a+ b = n. Here we
can take p to be any prime number that is unramified in E.
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1.2 Shimura data

Given a PEL datum as defined in the previous section, we will consider the Q-algebra C defined as
EndB(V ) (the B-linear endomorphisms of V ). This is a simple algebra over F (because it is a matrix
algebra over a division algebra) and it has a adjoint involution # coming from the pairing 〈−,−〉. We
define an algebraic group G/Q by its functor of points, for any Q-algebra R we set

G(R) :=
{
x ∈ (C ⊗Q R)× | x · x# ∈ R×

}
.

Equivalently, this can be described as (c.f. [Mil, pp. 82])

G(R) =
{
g ∈ GlB(V ⊗Q R) | ∃λ ∈ R× s.t. 〈gv, gw〉 = λ〈v, w〉

}
.

Example 1.2.1. In the first example we find G = GSp2g.

Example 1.2.2. In the second example we have G = B×

Example 1.2.3. In our third example G is a unitary group of signature (a, b), so we write G = GU(a, b)
(but a and b do not determine the group G).

By Proposition 8.12 of [Mil] there exists a morphism of R-algebras

C→ CR

such that h(z) = h(z)# and such that the symmetric R-valued form 〈−, h(i)−〉) on VR is positive definite.
This leads to a morphism

C× → C×R

which is pretty close to a morphism of algebraic groups S→ GR, i.e., a (weak) Shimura datum.

Proposition 1.2.4 (Proposition 8.14 in [Mil]). There exists a unique conjugacy class of morphisms
h : S→ GR that is a (weak) Shimura datum.

The choice of h determines a decomposition of VC = V1⊕V2 as a BC-module. The complex representation
V1 of B is defined over a number field E, which is called the reflex field.

1.3 Shimura varieties

Now let Up ⊂ G(A∞,p) be a neat (c.f. [Lan13, Definition 1.4.1.8]) compact open subgroup. Then there is
a smooth quasi-projective algebraic variety YU/E (the canonical model) such that

XU (C) = G(Q) \X ×G(A∞)/Up,

where X is the Hermitian symmetric space determined by h (it is Gad(R)/ stab(h)). We will now give a
‘moduli description’ of YU ; Due to the failure of the Hasse principle for G, we will in general only produce
a smooth quasi-projective moduli space MU such that

YU ⊂MU
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is an open and closed subscheme (so a disjoint union of connected components). Actually it will be
convenient to directly give a moduli description of an integral model of MU over OE,(p) := OE ⊗ Z(p).
Consider the set-valued functor FUp on the category of schemes over OE,(p) which takes an OE,(p)-scheme
T to the set of equivalence classes of quadruples (A, λ, i, µ), where

• A is an abelian scheme over T ;

• λ : A→ At is a prime-to-p polarisation;

• i : OB ↪−→ End(A) ⊗Z Z(p) is a ring homomorphism such that the Rosati involution induces the
involution ∗ on B and such that for all b ∈ OB

det(b,Lie(A)) = det(b, V1);

• µ is a Up level structure (c.f. [Lan13, Definition 1.3.7.1.])

Two such quadruples (A, λ, i, µ), (A′, λ′, i′, µ′) are equivalent if there is an isogeny f : A → B such that
the following diagrams commute

B B

End(A)⊗Z Q End(A′)⊗Z Q

i i′

f

A A′

At (A′)t

λ

f

λ′

f t

and such that f takes µ to µ′. We call an equivalence class of such quadruples an abelian scheme with
extra structures, and we often drop λ, i and µ from then notation. The moduli functor FUp is represented
by a smooth quasi-projective scheme XUp over OE,(p). If we vary Up then the varieties XUp form a
projective system endowed with an action of G(A∞,p).

Now fix a prime v | p of E, we let Ev denote the completion of E and let k ∼= Fq denote the residue field
of Ev. We define Xk = XUp over k to be the reduction mod v of XUp and let A/Xk be the universal
abelian scheme with extra structures. Choose an algebraic closure k of k and let X = Xk ⊗k k.

2 Newton Stratification

In this section we will quickly recall the Newton stratification of X. The idea is basically that there is a
‘discrete invariant’ associated to an abelian variety with extra structures (say over an algebraically closed
field) and that the loci where this discrete invariant is constant should stratify X. When G = GSp2g then
this discrete invariant is given by the Newton polygon, or equivalently the slopes of the isocrystal. In
general this will be an element b ∈ B(G,µ−1) as in the previous talk (recall that B(G,µ−1) is a partially
ordered set). For a point x ∈ X(k) (with k algebraically closed) we denote b(x) ∈ B(g, µ−1) to denote
the isomorphism class of the isocrystal with extra structures associated to b. Now let b ∈ B(G,µ−1) and
define

Definition 2.0.1.

X [b] := {x ∈ X : b(x) ≤ b}
X(b) := {x ∈ X : b(x) = b} .
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Theorem 2.0.2 (Theorem 3.6 of [RR96]). The subset X [b] ⊂ X is Zariski closed. This implies that

X(b) := {x ∈ X : b(x) = b} = X [b] \
⋃
b′<b

X [b‘]

is open in X [b] and is therefore locally closed

Remark 2.0.3. It is a Theorem of Hamacher [Ham15] (due to Oort [Oor00] in the Siegel case) that the
closure of X(b) is equal to X [b]. However, this uses the results that we will describe in the next section,
so we cannot use his results!

Example 2.0.4. The Newton stratification on a Shimura curve has two strata: A one-dimensional ‘ordi-
nary locus’ and a zero-dimensional ‘supersingular locus’. (We are only considering primes p where the
quaternion algebra splits, and so the p-divisible group G corresponding to the abelian surface will satisfy
G = H2 where H is a p-divisible group of height 2. We then call G ordinary if H is ordinary and G
supersingular if H is supersingular.)

Example 2.0.5. If G = GSp2g then the Newton strata can be described by Newton polygons and the
partial order is given by the natural partial order on these polygons. For example if g = 4 then we have
the following Newton strata (this is taken from example 8.1 in [Oor04]):

NP ξ f sdim(ξ) c(ξ) i(ξ)

ρ (4, 0) + (0, 4) 4 10 10 0

f = 3 (3, 0) + (1, 1) + (0, 3) 3 9 9 0

f = 2 (2, 0) + (2, 2) + (0, 2) 2 8 7 1

β (1, 0) + (2, 1) + (1, 2) + (0, 1) 1 7 6 1

γ (1, 0) + (3, 3) + (0, 1) 1 6 4 2

δ (3, 1) + (1, 3) 0 6 5 1

ν (2, 1) + (1, 1) + (1, 2) 0 5 3 2

σ (4, 4) 0 4 0 4

Here ρ ≥ (f = 3) ≥ (f = 2) ≥ β ≥ γ ≥ ν ≥ σ and β ≥ δ ≥ ν and the number f denotes the p-rank of the
abelian variety.

Remark 2.0.6. Fixing a Barsotti-Tate group Σ with extra structures in an isogeny class b ∈ B(G,µ−1)
defines a subset CΣ ⊂ X(b) called a leaf. The Newton stratum X(b) will be the union of such leaves and
we will define our Igusa varieties as certain covers of these leaves. However, for technical reasons, we
cannot just work with an arbitrary Σ and we will spend the next section singling out a particularly nice
class of such Σ’s.

3 Slope Filtrations

Recall that Barsotti-Tate groups over an algebraically closed field k are classified by their Dieudonné-
modules, which are free modules over W (k). After inverting p, these become isocrystals over W (k)[1

p ],
which were classified in terms of their slopes by Dieudonné and Manin. Below we will define the slopes
of a Barsotti-Tate group directly, without appealing to this classification (which does not exist over more
general bases).
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3.1 Completely slope divisible Barsotti-Tate groups

Definition 3.1.1 ([OZ02]). Let Σ/S be a Barsotti-Tate group with S of characteristic p. We say that Σ
is completely slope divisible if there is a filtration by (Barsotti-Tate) subgroups

0 = Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σm = Σ

and integers s, r1, · · · , rm with s ≥ r1 > r2 > · · · > rm ≥ 0 such that the quasi-isogeny

p−riF s : Σ→ Σ(ps)

is an isogeny and such that

p−riF s : Σi/Σi−1 → (Σi/Σi−1)(ps)

is an isomorphism. The rational numbers λi = ri
s are called the slopes of Σ; if Σ only has one slope λ we

call Σ isoclinic of slope λ. We will usually write Σi for the graded quotients Σi/Σi−1, these are isoclinic
of slope λi by definition.

Proposition 3.1.2. Let k be an algebraically closed field of characteristic p. Then a Barsotti-Tate group
Σ is completely slope divisible if and only if

Σ =
⊕
i

Σi

with the Σi isoclinic and defined over a finite field.

Remark 3.1.3. The notion of slope defined here agrees with the notion of slope of the isocrystal.

3.2 Existence of slope filtrations

If k is an algebraically closed field of characteristic of characteristic p that is not the algebraic closure
of a finite field, then not every Barsotti-Tate group over k is completely slope divisible. However by the
Dieudonné-Manin classification it is isogenous to a Barsotti-Tate group defined over a finite field and
therefore isogenous to a completely slope divisible group. Something similar will be true for Barsotti-Tate
groups Σ/S over nice bases S. However note that a completely slope divisible Barsotti-Tate group Σ/S
has constant Newton polygon, i.e., that for all geometric points x of S the Barsotti-Tate group Σx has
the same Newton polygon.

Theorem 3.2.1 (Corollary 2.2 of [OZ02]). Let Σ/S be a Barsotti-Tate group with constant Newton
polygon over a Noetherian integral normal scheme of characteristic p. Then there exists an isogeny
Σ→ Σ′ with Σ′ completely slope divisible.

We also record the following proposition which we will use in the next section:

Proposition 3.2.2 (Proposition 2.3 of [OZ02]). Let S be an integral scheme of characteristic p with
function field K and let Σ/S be a Barsotti-Tate group with constant Newton polygon. If ΣK is completely
slope divisible then so is Σ.
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4 Oort’s Foliation and Igusa varieties

In this section we will define leaves, show that they are closed and smooth subsets of the Newton strata
and then define Igusa varieties as covers of leaves associated to completely slope divisible Barsotti-Tate
groups.

Proposition 4.0.1 (Proposition 1 of [Man05]). Let Σ/Fp be a Barsotti-Tate group with extra structures
and let b ∈ B(G,µ−1) be its isogeny class. Define the leaf

CΣ := {x ∈ X | Gx ∼= Σx} ,

where G/X is the universal Barsotti-Tate group with extra structures and the isomorphisms are taken to
commute with the extra structures. Then CΣ is a closed subset of X(b) and it is smooth when given the
induced reduced subscheme structure.

Proof. We start by recalling a result of Oort, which we will use to prove that leaves are closed.

Lemma 4.0.2 (Theorem 2.2. of [Oor04]). Let K be a field of characteristic p and let Σ/K be a Barsotti-
Tate group. Let S → K be an excellent scheme (e.g. finite type over K) and let G → S be a Barsotti-Tate
group with constant Newton polygon. Then the locus

DΣ(G/S) :=
{
s ∈ S | there exists an algebraically closed field k ⊃ k(s) such that Σ⊗K k ∼= G ⊗k(s) k

}
is closed.

If both Σ and G are equipped with extra (PEL) structures, then there is a subset

CΣ(G/S) ⊂ DΣ(G/S)

consisting of those points s where there exists an algebraically closed field k ⊃ k(s) and an isomorphism
Σ⊗K k ∼= G ⊗k(s) k commuting with the extra structures. Now we would like to show that CΣ(G/S) is a
closed subset of WΣ(G/S). In fact we will show that it is a union of irreducible components of WΣ(G/S).
Let Z be an irreducible component of WΣ(G/S) such that the generic point of Z lies in CΣ(G/S). Then
by Theorem 1.3 of [Oor04] there is a finite surjective morphism T → Z such that GT is constant over T .
It is clear that GT must be then isomorphism to ΣT , so

CΣ(GT /T ) = T.

Now note that the formation of CΣ(G/S) commutes with base change because it is just a condition on
geometric fibers. Therefore we find that

CΣ(G/Z)T ∼= T

and therefore CΣ(G/Z) ∼= Z. We conclude that CΣ(G/S) is the union of all the irreducible components
Z such that the generic point ηZ ∈ CΣ(G/Z), hence CΣ(G/Z) must be closed.

Claim 4.0.3. Give CΣ the induced reduced subscheme structure and let x ∈ CΣ, then ÔCΣ,x does not
depend on x.
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Proof of Claim. Let x, y ∈ CΣ with corresponding abelian varieties with extra structure X,Y and let A
and B be the corresponding universal deformation rings (of deformations preserving the extra structures).
By Serre-Tate theory and the isomorphism X[p∞] ∼= Y [p∞] we find that A ∼= B. Furthermore the universal
Barsotti-Tate groupH over Spf A extends to a Barsotti-Tate group over SpecA by Lemma 2.4.4 of [Jon95].
Moreover the completed local rings of CΣ at x and y are given by the quotient of R corresponding to
CΣ(H/ SpecR) which is closed by Lemma 4.0.2. In particular these complete local rings do not depend
on x and y.

Since CΣ is reduced it is generally smooth which means there is a point x ∈ CΣ where the complete local
ring is a power series ring. But by the claim this means that the complete local ring at every point is
isomorphic to this power series ring, proving that CΣ is smooth (and equidimensional).

Let us now fix a completely slope divisible group Σ/Fp with extra structures and write Σ =
⊕

i Σi for its
slope decomposition. Then the fact that

Isog(Σ) =
∏
i

Isog(Σi)

tells us that the action of OBQp
on Σ is given by an action of OBQp

on each Σi. The decomposition

Σ =
⊕

i Σi induces a dual decomposition Σv =
⊕

(Σi)v, where the slope of (Σi)v is 1− λi. The fact that
Σ is polarised means that its Newton polygon symmetric, which means that for all i there exists a j such
that λi + λj = 1. Moreover the polarisation

λ : Σ→ Σv

then induces isomorphisms Σi → (Σj)v that commute with the extra structures. Now consider the leaf
Cb = CΣ ⊂ X(b) (here b ∈ B(G) is the isogeny class of Σ).

Lemma 4.0.4. Let G be the universal Barsotti-Tate group over Cb, then G is completely slope divisible.

Proof. We can check this one connected component at a time, so we can assume that Cb is connected.
Since Cb is smooth we find that it is integral and so we can consider its function field K. It is clear that
GK is completely slope divisible (this can be checked over an algebraically closed extension, where GK
becomes isomorphic to Σ ). Then Proposition 3.2.2 tells us that G is completely slope divisible.

Let us write 0 ⊂ G1 ⊂ · · · ⊂ Gk for this slope filtration (which is unique) and let us write Gi = Gi/Gi−1.
It follows from the uniqueness of slope filtrations that (Gi)x is isomorphic to Σi (compatible with extra
structures) for all geometric points x of Cb.

Definition 4.0.5. Let Jb,m → Cb be the scheme representing the functor Sch /Cb → Set given by sending
S/Cb to the set of isomorphisms {αi : Σi

S [pm]→ GiS [pm]}ki=1 of finite flat group schemes such that:

• They commute with the extra structures. In other words the map is OBQp
-linear and commutes with

the polarisation up to a scalar factor.

• They extend étale locally to any level m′ ≥ m.

We call Jb,m → Cb the Igusa variety of level m.
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Remark 4.0.6. The reason that we ask for the isomorphisms to extend étale locally to any level m′ ≥ m
is that there might exist endomorphisms Σi → Σi that don’t commute with the extra structures but such
that Σi[p]→ Σi[p] does commute with the extra structures.

Let Γb be the group of automorphisms of Σ that commute with the extra structures. Then Γb clearly acts
on Jb,m via the quotient Γb → Γb,m (we quotient out by those automorphisms that are trivial on Σ[pm]).

Proposition 4.0.7 (Proposition 3.3 of [Man04]). For any m ≥ 1, the Igusa variety Jb,m → Cb is finite
étale and Galois with Galois group Γb,m. In other words Jb,m → Cb is an étale Γb,m-torsor.

Proof. It is clear that the fibers of Jb,m(K) → Cb(K) are in bijection with the finite group Jb,m for K
algebraically closed. It is much harder to show that Jb,m → Cb is étale locally trivial, or that Gi[pm] ∼=
Σi[pm] étale locally. So let x ∈ Cb be a point and let R be the strictly Henselian local ring of Cb at x (the
inverse limit over all étale neighbourhoods of x), then it suffices to show that there is an isomorphism

Σi ×Fp
SpecR ∼= Gi ×Cb

SpecR,

commuting with the extra structures. Corollary 3.4 of [OZ02] tells us that there is an isogeny

Φ : Σi ×Fp
SpecR→ Gi ×Cb

SpecR,

that commutes with the extra structures. (To be precise the result says that any isogeny over the special
fiber can be lifted to a quasi-isogeny over SpecR. Checking that the resulting isogeny commutes with the
extra structures means checking that certain equalities hold inside the ring of self-isogenies over Σ/ SpecR.
Now we note that any self-isogeny of Σ is already defined over Fp and so it suffices to check these equalities
on the special fiber. So we just have to choose an isogeny Σi → Gi on the special fiber that commutes
with the extra structures, and such an isogeny exists because x ∈ CΣ).

Let d > 0 be an integer such that the kernel of Φ is contained in Σi
R[pd]. Then Φ determines an R-point

g of the (reduced) Rapoport-Zink space M
0,d
Σi and if we can show that g(SpecR) is a single closed point,

then it follows that GiR ∼= Σi
R. Note that g(SpecR) is contained in the subspace

Y =
{
t ∈M0,d

Σi | H × k(t) ∼= Σi × k(t)
}
,

where H/M0,d
Σi is the universal Barsotti-Tate group. It follows from Lemma 2.6 of [Man04] that Y is a

constructible subset of M
0,d
Σi and one can argue as in [Man04, pp.40] that Y is actually finite. Then the

map SpecR→ Y has to factor through a single closed point because R is integral and Y is finite.

Remark 4.0.8. There are projection maps Jb,m → Jb,m′ for m ≥ m′, given by restricting the isomorphisms
to the [pm

′
]-torsion subgroup. Moreover, these are equivariant for the action of Γb on Jb,m and Jb,m′ .

This means that Γb acts on the tower {Jb,m}m and one can actually extend this action to the action of a
certain monoid Γb ⊂ Sb ⊂ Jb(Qp).

4.0.9 Truncated reduced Rapoport-Zink spaces

Let us quickly recall what the notation M
n,d
Σi means, it is the moduli space over Fp whose R points are

given by pairs (H, ρ) where
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• H is a Barsotti-Tate group with extra structures over R;

• ρ : Σi
R → H is a quasi-isogeny that commutes with the extra structures,

such that pnρ is an isogeny and such that ker pnρ ⊂ Σi[pd]. This is a finite type separated Fp-scheme.

5 Product Formula

5.1 Some vague intuition

The idea of the product formula is that one can move in ‘two directions’ on the newton stratum. More
precisely given a point x ∈ Xb corresponding to an abelian variety A with extra structures one can
consider either

• The subset Z of Xb corresponding to abelian varieties B with extra structures that are prime-to-p
isogenous to A. This subset is precisely the leaf Cx = CA[p∞] .

• The subset Y of Xb corresponding to abelian varieties B with extra structures that are p-isogenous to
A. This subspace is related to the Rapoport-Zink space MA[p∞] (in fact it is p-adically uniformised
by it by ).

The moral of the story that I am about to tell is that these two subspaces are ‘orthogonal’ and so that
roughly speaking X(b) ≈ Z × Y.

5.2 Idea of the construction

Let Σ as before, then we are going to define maps

πN : Jb,m ×M
n,d
Σ → Xb

indexed by positive integers m,n, d,N satisfying a certain admissibility condition. Let me set all param-
eters to infinity for a moment and describe what happens on points, then we will spend a while trying
to make this work in families. We want to produce an abelian variety B with extra structures from the
following data:

• (Igusa) An abelian variety A with extra structures equipped with an isomorphism α : Σ → A[p∞]
respecting the extra structures.

• (Rapoport-Zink) A Barsotti-Tate group H and an isogeny ρ : Σ→ H

Here is the construction: We take A and quotient out by α−1(ker ρ). It is now not so hard to see that we
can reach every point in X(b) this way (all points of X(b) are isogenous to Σ after all).

Remark 5.2.1. There are two technical obstructions which make the construction not work in families

1. We don’t actually work with isogenies ρ : Σ → H but only with quasi-isogenies. However we can

restrict to the subspace M
∞,d
Σ where pdρ is an actual isogeny to fix this (but then our map will

depend on d!). Furthermore we will have to restrict to the subspace M
n,d
Σ where ker pdρ ⊂ Σ[pn] (so

now our map also depends on n!)
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2. We don’t actually have isomorphisms Σ[pm]→ A[pm], but only Σi[pm] to A[pm]i. We can split the
slope filtration (for Σ[pm]) by pulling back by Frobenius N times for N ≥ d/δB (so now our map
will also depend on N).

5.3 Key Lemma

We start with an important Lemma

Lemma 5.3.1 (Lemma 8 of [Man05]). Let G be a Barsotti-Tate group over a scheme S in characteristic
p. Suppose that G is completely slope divisible with slope filtration

0 ⊂ G1 ⊂ · · · ⊂ Gk = G,

and slopes λ1 > · · · > λk. Let qi be the denominator of λi written in minimal form, let Q be the least
common multiple of the qi, and let δ = min{λ1 − λ2, · · · , λk−1 − λk}. Then for any N ≥ 0 there is a
canonical isomorphism

G(pNQ)[pNδQ] ∼=
k∏
i=1

(Gi)(pNQ)[pNδQ]

that commutes with the extra structures.

Proof. This is Lemma 4.1 of [Man04]. The proof goes by induction on the number of slopes (the case
k = 1 is vacuous).

5.4 The actual construction

Now let m,n, d,N as above with m ≥ d and N ≥ d/δQ, then we will construct a morphism:

πN : Jm,b ×M
n,d
Σ → X(b)

Equivalently, we will construct a natural transformation of the corresponding moduli problems: Let R be

a k-scheme and let φ : R→ Jm,b ×M
n,d
Σ , i.e., φ gives us:

• An abelian scheme A/SpecR with extra structures with associated Barsotti-Tate group with extra
structures G := A[p∞].

• Isomorphisms αi : Σi[pm]→ Gi[pm] that commutes with the extra structures.

• A Barsotti-Tate group H/ SpecR equipped with a quasi-isogeny ρ : ΣR → H that commutes with
the extra structures. Moreover we know that pnρ is an isogeny, that ker(pnρ) ⊂ Σ[pd] and that
Σ[pd] ⊂ Σ[pm] since m ≥ d.

• A canonical isomorphism, commutes with the extra structures,

β : G(pNB)[pNδQ]→
k∏
i=1

(Gi)(pNB)[pNδQ]
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Now let I ⊂ A be the following (finite flat) group scheme: Start with the kernel of pnρ, twists by Frobenius
NB times, apply β and then apply

∏
i α

i. The inequality N ≥ d/δQ makes it so that G[pd] ⊂ G[pNδQ].
In symbols we take

I :=
∏
i

α−1
i

(
β (ker ρ)(pNB)

)
.

We define

B := A/I,

and we note that B naturally receives extra structures from A because I is stable under all the extra
structures by construction [I am being purposefully vague here]. We have now defined an R-point of X(b)

and so defined a morphism

πN : Jm,b ×M
n,d
Σ → X(b).

5.5 Main result

We end by stating the main result of this talk:

Proposition 5.5.1 (Proposition 11 of [Man05]). For any positive integers m,n, d,N with m ≥ d and
N ≥ d/δB there exists a morphism

πN : Jm,b ×M
n,d
Σ → X(b)

such that

1. πN is surjective for m,n, d,N sufficiently large (and m ≥ d,N ≥ d/δB) ;

2. πN is quasi-finite;

3. πN is proper.

Proof. 1. Given a point x ∈ X(b), there are m,n, d,N sufficiently large (with m ≥ d and N ≥ d/δQ)
such that π−1

N (x) is nonempty. This follows from the fact that there is a p-power isogeny (commuting
with the extra structures) from the abelian variety Ax to an abelian variety Ay, such that y ∈ CΣ. In
fact since X(b) is of finite type we can find a uniform m,n, d,N such that πN is surjective. (Because
πN is proper the image is closed, so we can just take m,n, d,N sufficiently large so that the image
contains all the generic points of irreducible components of X(b), since there are finitely many of
those).

2. This is Proposition 4.5 of [Man04]. (Her proof there doesn’t take into account extra structures, but
the result with extra structures follows from it as the Rapoport-Zink spaces and Igusa varieties with
extra structures are subsets of the ones without extra structures).

3. This is Proposition 4.8 of [Man04]. The main idea is to use the valuative criterion for properness,
but the proof is quite long so we do not include it.
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